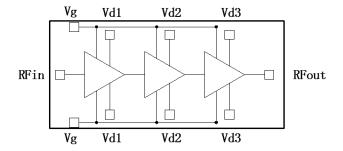
中国电子科技集团公司第十三研究所

v01.2008

性能特点

● 频率范围: 11GHz~13GHz

● 功率增益: 20dB


● 饱和输出功率: 45.5dBm

● 功率附加效率: 37%

● +28V@1.6A(静态)

● 芯片尺寸: 4.30mm×4.37mm×0.08mm

功能框图

产品简介

NC116269C-1113P35 是一款 GaN MMIC 大功率高线性功率放大器芯片,采用十三所 0.25um GaN 功率单片工艺制作,频率范围覆盖 11GHz~13GHz,典型功率增益 20dB,典型饱和输出功率 35W,功率附加效率 37%,连续波模式下工作。

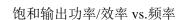
直流电参数(T_A=+25℃)

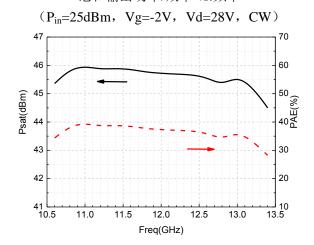
指标	符号	最小值	典型值	最大值	单位
栅极工作电压	Vg	-	-2	-	V
漏极工作电压	Vd	-	28	-	V
静态漏极电流	Id	-	1.6	-	A
动态漏极电流	Idd	-	3.3	-	A
动态栅极电流	Igg	-	-	2	mA

微波电参数 (T_A=+25℃, Vd=+28V, Vg=-2V)

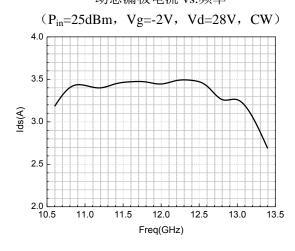
指标	符号	最小值	典型值	最大值	单位
频率范围	f	11~13			GHz
饱和输出功率	Psat	-	45.5	-	dBm
功率增益	Gp	-	20	-	dB
功率增益平坦度	△Gp	-	±0.3	-	dB
功率附加效率	PAE	-	37	-	%

注: 1) 芯片均经过在片 100% 直流测试, 100% 射频测试;

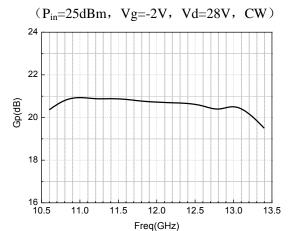

2) 测试条件: Vd=+28V, 连续波, Vg=-2V, P_{in}=25dBm。

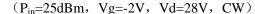

使用限制参数

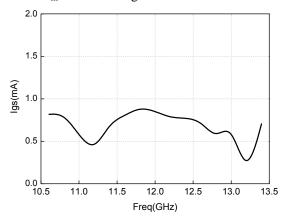
最大漏源电压	+32V	
最小栅源电压	-5V	
最高输入功率(CW)	+28dBm	
最高工作沟道温度	+200°C	
存储温度	-65℃~+150℃	



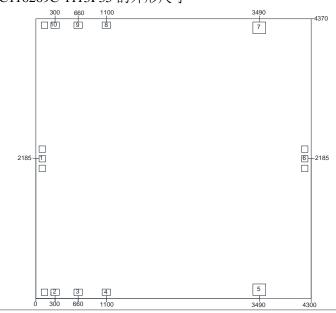
典型曲线(T_A=+25℃)




动态漏极电流 vs.频率



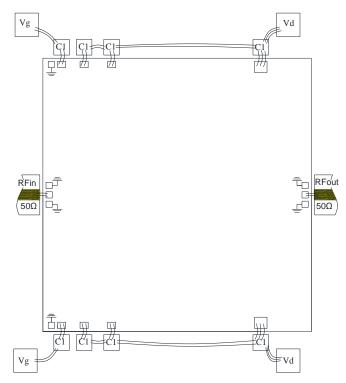
功率增益 vs.频率 (P_{in}=25dBm)


动态栅极电流 vs.频率

外形尺寸

NC116269C-1113P35 的外形尺寸

注:图中单位均为微米(μm); 外形尺寸公差±50μm。


中国由子科技集团公司第十三研究员

v01 2008

压点排列图

序列号	符号	功能	尺寸
1	RFin	输入压点	100×100μm²
2, 10	Vg	栅极键合压点	130×100μm²
3, 9	Vd1	漏极键合压点	$130 \times 100 \mu m^2$
4, 8	Vd2	漏极键合压点	130×100μm ²
5, 7	Vd3	漏极键合压点	200×180μm²
6	RFout	输出压点	100×100μm²

建议装配图

- 注: 1) 外围电容的容值为 C1=1000pF, 推荐使用单层陶瓷电容, 其中 C1 应尽量靠近芯片, 不要超过 500um。
 - 2) 栅极外接 10 µF 电容。
 - 3) Ku 频段及以上考虑 125μm~250μm 的低损低介电常数材料微带线粘接/烧结在载体上,以降低传输损耗,输入输出键合金 丝长度控制在 300μm±100μm 以内。

注意事项

- 1) 单片电路需贮存在干燥洁净的 N₂环境中;
- 2) 芯片衬底材料 6H-SiC 很脆,使用时必须小心,以免损伤芯片;
- 3) 芯片表面有绝缘保护层,需注意装配环境洁净度,避免表面过度沾污;
- 4) 载体的热膨胀系数应与 6H-SiC 接近,线热膨胀系数 4.2×10⁻⁶/℃,建议载体材料选用 CuMoCu 或 CuMo 或 CuW;
- 5) 装配时芯片与载体之间要避免孔洞,同时保证盒体和载体的良好散热;
- 6) 建议用金锡焊料烧结,Au:Sn=80%:20%,烧结温度不超过300℃,时间不长于30秒,烧结工艺避免温度快速变化,需要逐步升降温;
- 7) 建议使用直径 25μm~30μm 金丝,键合台底盘温度不超过 250℃,键合时间尽量短,键合工艺避免温度快速变化;
- 8) 上电时先加栅压后加漏压,去电时先降漏压后降栅压;
- 9) 芯片内部输入输出有隔直电容;
- 10) 芯片使用、装配过程中注意防静电, 戴接地防静电手镯, 烧结、键合台接地良好。

该产品对静电较敏感 使用中请注意防静电