

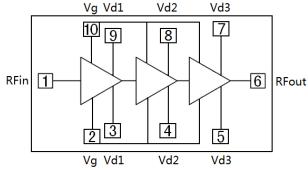
中国电子科技集团公司第十三研究所

v01.2008

性能特点

● 频率范围: 28.0GHz~31.0GHz

● 功率增益: 20dB


● 饱和输出功率: 43dBm

● 附加效率: 25%

● +24V@2A(静态)

• 芯片尺寸: 3.73mm×5.65mm×0.10mm

产品简介

NC116250C-2831P20 是一款基于 GaN HEMT 晶体管实现的功率放大器芯片,采用 GaN 功率 MMIC 工艺制作。工作频率范围覆盖 28GHz~31GHz,功率增益大于 17dB,典型饱和输出功率大于 20W,典型功率附加效率大于 25%,可在脉冲和连续波(工作电压降额)模式下工作。芯片通过背面通孔接地,双电源工作,典型工作电压 Vd=+24V, Vg=-1.6V。该芯片主要应用于微波收发组件、大功率固态发射机等。

功能框图

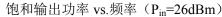
直流电参数(T_A=+25℃)

指标	符号	最小值	典型值	最大值	单位
漏极工作电压	Vd	20	24	26	V
栅极工作电压	Vg	-1.2	-1.6	-2.2	V
静态漏极电流	Id		2.0	2.7	A
动态漏极电流	Idd		3.8	4.3	A
动态栅极电流	Igg		0.3	2	mA

微波电参数(T_A=+25℃, Vd=+24V, Vg=-1.6V)

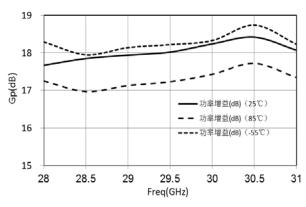
指标	符号	最小值	典型值	最大值	单位
频率范围	f	28~31			GHz
饱和输出功率	Psat	43			dBm
功率增益	Gp	17			dB
功率增益平坦度	△Gp			±1	dB
功率附加效率	PAE	25			%
线性增益	Gain	20			dB
线性增益平坦度	△Gain			±2	dB
输入驻波	VSWR(in)			2.5	-

- 注: 1) 芯片均经过在片 100% 直流测试, 100% 射频测试;
 - 2) 除特殊说明外,该手册的曲线测试条件均为: Vd = +24V, Vg=-1.6V, Pin=26dBm, 连续波

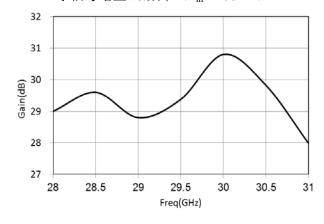

中国电子科技集团公司第十三研究所

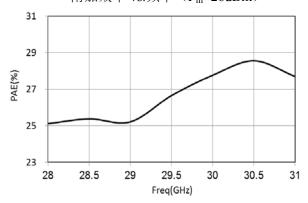
v01.2008

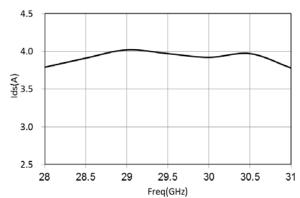
使用限制参数

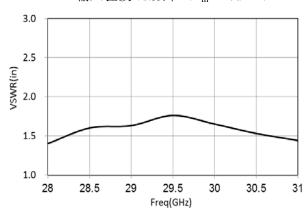

参数	符号	极限值
最大漏源电压	Vd	+26V
最小栅源电压	Vg	-5V
最高输入功率(CW)	Pin	+30dBm
储存温度	T _{STG}	-65°C∼+150°C
最高工作沟道温度	Top	+200℃

典型曲线(Vd=+24V, Vg=-1.6V)



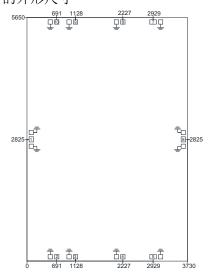

功率增益 vs.频率(P_{in}=26dBm)


小信号增益 vs.频率 (P_{in}=-20dBm)


附加效率 vs.频率 (P_{in}=26dBm)

漏极动态电流 vs.频率(Pin=26dBm)

输入驻波 vs.频率(P_{in}=-20dBm)

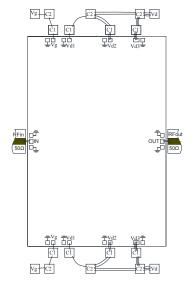


中国由子科技集团公司第十三研究的

V01 2008

外形尺寸

NC116250C-2831P20的外形尺寸



注:图中单位均为微米(μm); 外形尺寸公差±50μm。

键合压点定义

压点编号	功能符号	功能描述	尺寸
1	RFin	射频信号输入端,外接50欧姆系统,无需隔直电容	100×120μm ²
2, 10	Vg	放大器栅压馈电端, 需外置 100pF、1000pF 电源滤波电容	100×100μm ²
3, 9	Vd1	放大器漏压馈电端,需外置 100pF、1000pF 电源滤波电容	100×100μm ²
4, 8	Vd2	放大器漏压馈电端, 需外置 100pF、1000pF 电源滤波电容	100×100μm ²
5, 7	Vd3	放大器漏压馈电端,需外置 100pF、1000pF 电源滤波电容	150×100μm ²
6	RFout	射频信号输出端,外接50欧姆系统,无需隔直电容	100×120μm ²

建议装配图

注: 外围电容 C1 的容值为 100pF, C2 的容值为 1000pF。

中国电子科技集团公司第十三研究所

v01.2008

注意事项

- 1) 单片电路需贮存在干燥洁净的 N₂环境中;
- 2) 芯片衬底材料 6H-SiC 很脆,使用时必须小心,以免损伤芯片;
- 3) 芯片表面没有绝缘保护层,需注意装配环境洁净度,避免表面过度沾污;
- 4) 载体的热膨胀系数应与 6H-SiC 接近,线热膨胀系数 4.2×10⁻⁶/℃,建议载体材料选用 CuMoCu 或 CuMo 或 CuW;
- 5) 装配时芯片与载体之间要避免孔洞,同时保证盒体和载体的良好散热;
- 6) 建议用金锡焊料烧结,Au:Sn=80%:20%,烧结温度不超过300℃,时间不长于30秒,烧结工艺避免温度快速变化,需要逐步升降温;
- 7) 建议使用直径 25µm~30µm 金丝,键合台底盘温度不超过 250℃,键合时间尽量短,键合工艺避免温度快速变化;
- 8) 上电时先加栅压后加漏压,去电时先降漏压后降栅压;
- 9) 芯片内部输入输出有隔直电容;
- 10) 芯片使用、装配过程中注意防静电, 戴接地防静电手镯, 烧结、键合台接地良好;
- 11) 有问题请与供货商联系。

该产品对静电较敏感 使用中请注意防静电