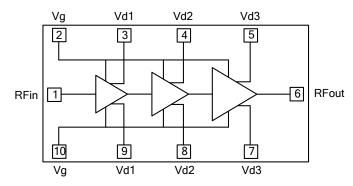
中国电子科技集团公司第十三研究所

v01 1803

性能特点

● 频率范围: 24.25GHz~27.5GHz

● 功率增益: 17dB


● 饱和输出功率: 40dBm

● 功率附加效率: 30%

● +20V@1.1A(静态)

● 芯片尺寸: 3.57mm×3.17mm×0.10mm

功能框图

产品简介

NC116139C-2428P10 是一款基于 GaN HEMT 晶体管实现的高功率放大器芯片,采用 GaN 功率 MMIC 工艺制作。工作频率范围覆盖 24.25GHz~27.5GHz,功率增益大于 17dB,典型饱和输出功率 10W,典型功率附加效率 30%,可在脉冲和连续波(工作电压降额)模式下工作。芯片通过背面通孔接地,双电源工作,典型工作电压 Vd=+20V, Vg=-1.2V。该芯片主要应用于微波收发组件、大功率固态发射机等。

直流电参数 (T_A=+25℃)

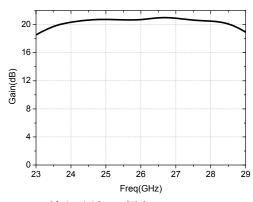
指标	符号	最小值	典型值	最大值	单位
栅极工作电压	Vg	-1.0	-1.2	-1.4	V
漏极工作电压	Vd	18	20	22	V
静态漏极电流	Id	1.0	1.1	1.2	A
动态漏极电流	Idd		1.8	5	A
静态栅极电流	Ig		0.1	1	mA
动态栅极电流	Igg		3	4	mA

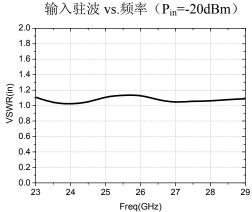
微波电参数 (T_A=+25℃, Vd=+28V, Vg=-2V)

指标	符号	最小值	典型值	最大值	单位
频率范围	f	24.25~27.5			GHz
饱和输出功率	Psat	39	40		dBm
功率增益	Gp	16	17	18	dB
功率增益平坦度	$\triangle Gp$		±1		dB
功率附加效率	PAE	28	30		%
线性增益	Gain	24	25	26	dB
线性增益平坦度	△Gain			±1	dB
输入驻波	VSWR(in)		1.07	1.12	-
二次谐波				X	dBc

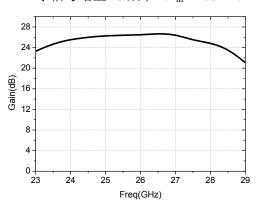
- 注: 1) 芯片均经过在片 100% 直流测试, 100% 射频测试;
 - 2) 除特殊说明外,该手册的曲线测试条件均为: Vd=+28V, Vg=-2V, P_{in}=24dBm, 脉宽 2ms, 占空比 30%;
 - 3) 热仿真时建议芯片热阻值为 1.2℃/W (测试条件: 脉宽 2ms, 占空比 30%, 热功耗 25W, 环境温度 70℃)。

中国电子科技集团公司第十三研究所


v01.1803

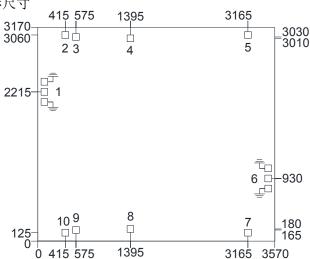

使用限制参数

参数	符号	极限值
最大漏源电压	Vd	+30V
最大栅源电压	Vg	-1.5V
最高输入功率(CW)	P _p	+35dBm
储存温度	T_{STG}	-65℃~+150℃
最高工作沟道温度	Top	+200°C
负载阻抗失配(抗烧毁)	Z_0	6: 1


典型曲线 (Vd=+28V, Vg=-2V)

功率增益 vs.频率 (P_{in}=20dBm)

小信号增益 vs.频率(P_{in}=-10dBm)

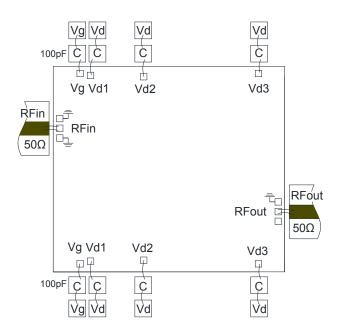

测试条件: 输入功率 10-20dBm, 1dB 步进。

中国电子科技集团公司第十三研究所

v01 1803

外形尺寸及压点排列图

NC116139C-2428P10 的外形尺寸



注:图中单位均为微米(μm); 外形尺寸公差±100μm。

压点排列图

序列号	符号	功能	尺寸
1	RFin	输入压点	100×100μm ²
2, 10	Vg	栅极键合压点	100×100μm ²
3, 9	Vd1	漏极键合压点	100×100μm ²
4, 8	Vd2	漏极键合压点	100×100μm ²
5, 7	Vd3	漏极键合压点	100×100μm ²
6	RFout	输出压点	100×100μm ²

建议装配图

- 注: 1) 外围电容的容值为 C=100pF, 推荐使用单层陶瓷电容, 其中 C 应尽量靠近芯片, 不要超过 750μm。
 - 2) Ku 频段及以下功率电路微带线可采用 200μm~300μm 厚陶瓷烧结在载体上,简化装配工艺。Ku 频段及以上考虑 125μm~250μm 的低损低介电常数材料微带线粘接/烧结在载体上,以降低传输损耗,输入输出键合金丝长度控制在 350μm±150μm 以内。

NC116139C-2428P10 GaN MMIC 功率放大器芯片, 24.25GHz~27.5GHz

中国电子科技集团公司第十三研究所

v01.1803

注意事项

- 1) 单片电路需贮存在干燥洁净的 N₂环境中;
- 2) 芯片衬底材料 6H-SiC 很脆,使用时必须小心,以免损伤芯片;
- 3) 芯片表面没有绝缘保护层,需注意装配环境洁净度,避免表面过度沾污;
- 4) 载体的热膨胀系数应与 6H-SiC 接近,线热膨胀系数 4.2×10⁻⁶/℃,建议载体材料选用 CuMoCu 或 CuMo 或 CuW;
- 5) 装配时芯片与载体之间要避免孔洞,同时保证盒体和载体的良好散热;
- 6) 建议用金锡焊料烧结,Au:Sn=80%:20%,烧结温度不超过 300℃,时间不长于 30 秒,烧结工艺避免温度快速变化,需要逐步升降温;
- 7) 建议使用直径 25μm~30μm 金丝,键合台底盘温度不超过 250℃,键合时间尽量短,键合工艺避免温度快速变化;
- 8) 上电时先加栅压后加漏压,去电时先降漏压后降栅压;
- 9) 芯片内部输入输出有隔直电容,但输入端有直流对地短路结构;
- 10) 芯片使用、装配过程中注意防静电, 戴接地防静电手镯, 烧结、键合台接地良好;
- 11) 可提供 QF087 型金属陶瓷管壳封装产品;
- 12) 有问题请与供货商联系。

该产品对静电较敏感 使用中请注意防静电