v01 1807

性能特点

● 频率范围: 32GHz~40GHz

● 功率增益: 20dB

● 饱和输出功率: 28dBm

● 功率附加效率: 35%

● +4.5V@250mA(静态)

● 芯片尺寸: 3.35mm×1.75mm×0.10mm

产品简

NC11353C-3240 是一款基于 GaAs HEMT 晶体管实现的高功率放大器芯片,采用 GaAs 功率 MMIC 工艺制作。工作频率范围覆盖 32GHz~40GHz,功率增益大于 20dB,典型饱和输出功率 28dBm,典型功率附加效率 35%,可在脉冲和连续波(工作电压降额)模式下工作。芯片通过背面通孔接地,双电源工作,典型工作电压 Vd=+5V,Vg=-0.45V。该芯片主要应用于微波收发组件、大功率固态发射机等。

功能框图

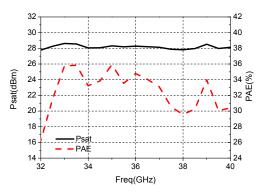
直流电参数(T_A=+25℃)

指标	符号	最小值	典型值	最大值	单位
栅极工作电压	Vg	-0.3	-0.45	-0.5	V
漏极工作电压	Vd	4	5	5.5	V
静态漏极电流	Id	220	240	260	mA
动态漏极电流	Idd		400	450	mA
静态栅极电流	Ig		0.1	1	mA
动态栅极电流	Igg		1	4	mA

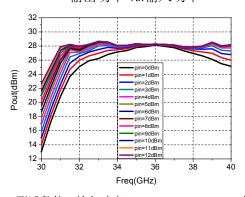
微波电参数 (T_A=+25℃, Vd=+4.5V, Vg=-0.35V)

指标	符号	最小值	典型值	最大值	单位
频率范围	f	32~40			GHz
饱和输出功率	Psat	27.8	28	28.5	dBm
功率增益	Gp	19.8	20	20.5	dB
功率增益平坦度	△Gp			±0.5	dB
功率附加效率	PAE	30	35		%
线性增益	Gain	23	27	31	dB
线性增益平坦度	△Gain			±4	dB
输入驻波	VSWR(in)		1.2	1.3	1

- 注: 1) 芯片均经过在片 100% 直流测试, 100% 射频测试;
 - 2) 除特殊说明外,该手册的曲线测试条件均为: Vd=+5V, Vg=-0.45V, P_{in}=8dBm, 脉宽 100μs, 占空比 10%;
 - 3) 热仿真时建议芯片热阻值为 $1.2 \, {\mathbb C}/{\mathbb W}$ (测试条件:连续波,热功耗 $2{\mathbb W}$,环境温度 $70 \, {\mathbb C}$)。

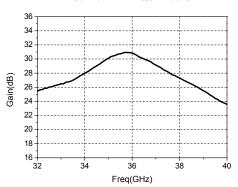

v01 1807

使用限制参数

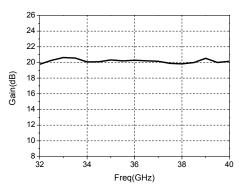

参数	符号	极限值
最大漏源电压	Vd	+8V
最大栅源电压	Vg	-0.7V
最高输入功率(CW)	Pp	+10dBm
储存温度	T_{STG}	-65°C∼+150°C
最高工作沟道温度	Top	+200℃
负载阻抗失配(抗烧毁)	Z_0	5: 1

典型曲线(Vd=+5V, Vg=-0.45V)

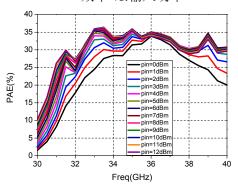
饱和输出功率/效率 vs.频率 (Pin=8dBm)



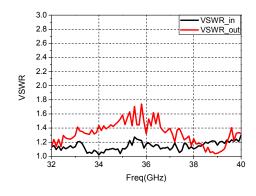
输出功率 vs.输入功率



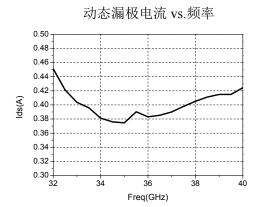
测试条件:输入功率 $0dBm\sim12dBm$,1dB 步进。

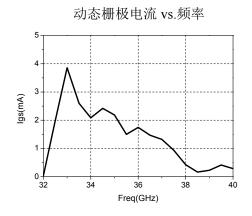

线性增益 vs.输入功率

功率增益 vs.频率(P_{in}=8dBm)

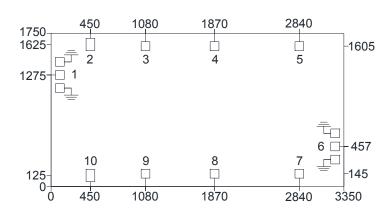


效率 vs.输入功率




测试条件: 输入功率 0dBm~12dBm, 1dB 步进。

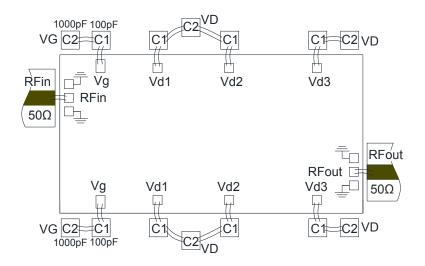
输入/输出驻波 vs.输入功率


v01.1807

外形尺寸及压点排列图

NC11353C-3240 的外形尺寸

注:图中单位均为微米(μm); 外形尺寸公差±100μm。


压点排列图

序列号	符号	功能	尺寸
1	RFin	输入压点	100×100μm²
2	Vg1	栅极键合压点	100×140μm²
3	Vd1	漏极键合压点	100×100μm²
4	Vd2	漏极键合压点	100×100μm²
5	Vd3	漏极键合压点	100×100μm²
6	RFout	输出压点	100×100μm²
7	Vd3	漏极键合压点	100×100μm²
8	Vd2	漏极键合压点	100×100μm²
9	Vd1	漏极键合压点	100×100μm²
10	Vg1	栅极键合压点	100×140μm²

v01 1807

建议装配图

- 注: 1) 外围电容的容值为 C1=100pF, C2=1000pF, 推荐使用单层陶瓷电容, 其中 C1 应尽量靠近芯片, 不要超过 750μm。
 - 2) Ku 频段及以下功率电路微带线可采用 200μm~300μm 厚陶瓷烧结在载体上,简化装配工艺。Ku 频段及以上考虑 125μm~250μm 的低损低介电常数材料微带线粘接/烧结在载体上,以降低传输损耗,输入输出键合金丝长度控制在 350μm±150μm 以内。

注意事项

- 1) 单片电路需贮存在干燥洁净的 N₂环境中;
- 2) 芯片衬底材料 6H-SiC 很脆,使用时必须小心,以免损伤芯片;
- 3) 芯片表面没有绝缘保护层,需注意装配环境洁净度,避免表面过度沾污;
- 4) 载体的热膨胀系数应与 6H-SiC 接近,线热膨胀系数 4.2×10⁻⁶/℃.建议载体材料选用 CuMoCu 或 CuMo 或 CuW;
- 5) 装配时芯片与载体之间要避免孔洞,同时保证盒体和载体的良好散热;
- 6) 建议用金锡焊料烧结, Au:Sn=80%:20%,烧结温度不超过 300℃,时间不长于 30 秒,烧结工艺避免温度快速变化,需要逐步升降温;
- 7) 建议使用直径 25μm~30μm 金丝,键合台底盘温度不超过 250℃,键合时间尽量短,键合工艺避免温度快速变化;
- 8) 上电时先加栅压后加漏压,去电时先降漏压后降栅压;
- 9) 芯片内部输入输出有隔直电容,但输入端有直流对地短路结构;
- 10) 芯片使用、装配过程中注意防静电, 戴接地防静电手镯, 烧结、键合台接地良好;
- 11) 可提供 OF087 型金属陶瓷管壳封装产品;
- 12) 有问题请与供货商联系。

该产品对静电较敏感使用中请注意防静电